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A NUMERICAL SOLUTION OF THE HEAT TRANSFER EQUATION
Sh. Ye. Mikeladze

1. Preliminary Remarks

The Cauchy problem of the propagation of heat in a one-dimensional
conductor has been studied in an apticle by Kurant, Fridrikhs, and
levi [1]. The authors show that for a difference equation approxi-
mating a heat transfer equation to converge, the time step should
decrease 1in proportion to the square of the spatial step. It was
shown that the method may be used in solving multidimensional problems,
1.e., those with two or more spatial coordilnates. Théy do not study
the law of error propagation nor do they estimate the error.

Even earlier, Richardson's work [2] had appeared in which the
question of approximating the one-dimensional heat transfer problem
with bouhdary and starting conditions was developed 1n one particular
example with the ald of a difference equation. In this work the .
@gmperatures in the initial layer 5re calculated by a Fourler seriles
and then they are found by means of a recursion relation layer by
layer. The convergence of the computational process used in the work
i;:ﬁgf demonstrated nor 1s the error calculated.

Subsequently ;t)proved that Richardson's computa;ional process
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diverges [2]. This fact is explained in a quite elementary manner
on page 22 of an interesting survey article by P. P. Yushkov [3].

Just because of the incomplete state of the theory of approxi-
mating parabolic-type linear equations by difference equations and
‘because of the multitude of interesting problems awailting solufion
we consldered it expedient to devoté a few articles to this theory
[4-6].

The aim of the present work 1s on the one hand to set forth the
problem of approximating parabolic-type equations by more complete
difference equatioﬁs with positive coefficients guaranteeing that the
computations will converge for one-dimensional and multidimensional
problems under sufficiently general conditions, and on the other to
point out certain findings [7-11] made more recently in a less
general formulation and resulting from findings made by us earliér,
(5].

The main attention of this paper is devoted to deriving the
general recursion relations which allow us to pass from layer to layer
and also to evaluate correspondingly'the error of the solution.

We worked out a method of constructing a system of linear
algebraic equations relating to each other the values of the unknown
functions in the nodes of any two successlve layers, In the one-
dimensional case 1t leads to simple new formulas of great accuracy;
the method 1s also applicable to two- and three-dimensional caées
which up till now have been excluded from examination. This applies
especlally to the three-dimensional case. It 1s demonstrated that
the derived system of eguations can be solved by iteration, the con-
vergence of the 1tefative process beilng ensured for any intilal

values by appropriate selection of time and space steps from the 1in-
terval or intervals of change in them. In proving the convergence
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of the computational process, 1t 1s assumed that the desiredvéolution
eiists. .

A Formulas are derived for rhombic networks. From these, in
particular, are obtained the formulas for rectangular and hexagonal
networks and the solutlon errors are estimated.

Highly accurate formulas are derived for boundary conditlons of
the general type.

The finite-difference equatlons and estimates to be derived in
this‘work may be used equaliy in the Cauchy problem and in problems
involving boundary and initial conditions.

In the following, for brevity, we concentrate only on the problems
of heat propagation with boundary and initial conditions.

Throughout this article we shall assume that we are considering
bounded, 80lid, uniform, 1sotropic bodies and will not especilally
stipulate this.

The length of the article does not allow us to analyze all
possible cases to which our arguments are applicable. Those who
have familiarized themselves with our findings willAeasily see hcw

they may be used in various cases not examined in this article.

2. Error Analysis

In this section we shall investigate the errors in the various
algebralc analogs of differential equationé of parabolic type and de-~
duce sufficlent tests for convergence of the solution of the boundéry
problem for the difference analog to the corresponding solution of
the parabolic differential equation.

;;;H We shall assume the values of the desired function to be known

in the nodes of the first few layers and to be s in number and shall

examine the difference equations which permit us to determine its
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values in the succeeding layers, layer by layer.

In so doing; we shall 1limit ourselves to the case of a spatiai

variable x and time t, inasmuch as the theory which we are expounding

is applicéble to any number of spatiél varia bles; but for definite-

ness our arguments will concern one variable. The extension to the

'general case presents no difficulty at all.

We shall begin with certaln definitions and nomenclature permlitting i

us to condense further arguments, and above all we shall agree, with-

out stipulating it each time, that when t > 0 there exists a desired

solution of u(x,t) satisfying the given differential equation with

boundary and initial conditions, and that all derivatives of it with

respect to t and x, up to those orders which will be used below, also

exist and are continuous in the closed region Q.

As for the solutions of multidimensional problems, we shall

also always assume that 1n those reglons where these solutions are

considered the assumptions of the preceding paragraph hold true.

Let us take rectangle Q in the plane x,ts

osSssL oSIST,

where T 1s the time interval during which the process 1s beilng

studied.

Let us now examine the rectangular network

xﬂi’l( '.;- 0, Iy .-.o-%—)l ‘-kl(k -0, I, n.:"z—.)'

parallel to the axes of the coordiﬁates, the sides of the cells of

the network being h and (along axes x and 5).

Let us examine 1n the network the'relationship

t



“bv;l--i-:—.;‘(z; LYY 2 l{--.u-a +

(1)
'+Z Y e AL YR b
» < .

+R«W(i-o, x,....-ll-—:; I x).

relating to each other the values of u(x,t) at the points (network

nodes) lying on the segments

tmily 1=t Dy 1= s =) (2)

with its values at the points (ih, (J+s)l) of the segment
In the above relationship (1) for all the values of v, s, and
J we shall have ) .
v, spj=u vk (s1+7) 1)
but the coefficlents a and B are functions of the polnts defined in
rectangle Q, while Ri, 8+] is the remainder.

Rejecting R we arrive at the recurslion equation

1,84]
- Ui y= ﬂd.!u: (Z &, l+l—z' U, 441 + (3

+Z L RTTEN Uu.ul-afi----"l'zﬁ.l Us.:)-
. L - T

permitting us to find very easlly the successlvely approximated

values of the desired function in all the nodes lying within Q,‘
starting from the values on the initial segments derived from Egqs. (2)
when J = 0.

"'Let us now investigate in what cases, when 1 - O, the approximate
;élﬁes of Ui, s+J
of the network.

will tend to the exact values u in the nodes



Using Formulas (1) and (3), we can write

Z ‘v. o4 fmt E" .+J"l+‘too + Z "0 s E‘ll -
T

v

+ (%)

E‘- O-H“‘-'. 23] ﬁ“. od

. T Riasi (i— o x....,-—lz;-,—:);

where

W eki=Uis 04y — Ui 0y q

is the error, and

e Gt (s

ﬁ-‘w L2 b Z Koy a4jmy 'LZ Gy, o+;'-;+ e ¥ Z &y ¢
K . b T

Let M and 0 respectively designate the greatest values of

|R | and |A1 l in the rectangle Q; let us now limit ourselves

1,84) » 84J
to the assumpticns that coefficients a are not negative, the sums

of BI’ having positive values for all

s+J

Ly g45—10 Cprodgagrece? [ 2 1¥]

not equal simultaneously to O.

We shall examine the absolute values of the errors in the nodes

of the 1nitial segments t = 0, 1,..., (s-1)1 and the sides of rectangle

Q. x =0, x = L; we shall designate.the largest one of them by e.

We shall designate by 38 the upper bound of the absolute values

+J
of the errors which occur on the layer (s+])1 as result of rounding

off the values of U computed with the aid of Formula (3). We

i, s+J
shall show that Formula (4) will allow us to investigate the complete
Efrdr'ei s+J determined by the errors in the initial values, the
. ?
error in the Formula R1 s+]° and the rounding-off errors.
" Pl

Indeed, the fraction

-6-
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s o :

+1s the average for éhe,errors

- o+l-p o fup
since all the a's are positive and do not vanish simultaneously.
Hence, when J = O, the absolute value of the fraction in which we
are interested 1s not greater than ¢ . Therefore Formula (4) on

layer t = sl leads to the followlng estimate of the error
18] S s34 M9,

Setting J = 1 in (%) and repeating the above reasoning, we shall
verify that for errors in the nodes of the segment t = (s+1)1l there
exlsts the estimatet

Boapsl =3 + +(+ M- ¥,3+ 3y,

and, in general, for the values of the errors on layer t = (8+l)1 we

- obtalin:
| [Boasdl =¥+ 0 +6+6’+...+6’)-“+9-+i+*"~+1—15+"'+°’y'
We shall examline these cases separately
31, ¥m=1, 3>1.
When 6 < 1 we have
lfcoc+:|<“’“+——— +-'&—" . (6)

1—6 [

where $ is the greatest absolute value of the errors occurring because
'or rounding-off the values of the solution in each node of rectangle

Q._»_ !

-



‘ fﬁe’e;ror eéJ+1, decreasing ag J increases, has almost no»errect
on 51’3+J, for sufficiently large values of J; 1f vanishes when 1 - O,
The error M{1 — &J! depends on the remainder term of the calculated
formula (3) and 8. The value of 1 —5 may, in particular, also be
infinitesimally small in comparlson with 1. Therefore if M 18 an
infinitesimal of higher order than 1 — 6, then M{(1 — &) ~! will also
cease to affect the error 51 s+J’ beginning with a certain value of
1. It remains to examine the effect of &(1 —-6)" on &1 s+J° i.e.,
examine the sensitivity of the desired solution to reunding-off
errors. We may, by holding h and 1 fixed, make $(1 — &) ! arbitrarily
small, since we are in no way restricted in our choice of $. After
this, it is easy to indicate to how many decimal places one must |
calculate using (3), so that the rcunding-off error 1is almost
imperceptible.

When 6 = 1 we find

Snorsf S¢+ G+ ML)

Hence 1t follows that in the whole region Q in the case under con-
slderation there exlsts the error estimate

(7)

. .fT
18 aasdl =2 vE (M+9).
Thus proceeding from the values on the 1lnitial straight lines.

"‘i’(j-ov‘. .... Y Rl l)

and x = 0, x = L, we shall be able to calculate with the aid of

Formula (3) all the Ui s+ 's in succession, layer by layer, and 1in

so doing, if the initial values aré approximated with an error of order

PE
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T with respect to ! and the error 1n Formula (3) has an accuracy of

;T+‘, then we can always make thé sum €+TM1 ! less than the previously

prescribed magnitude 1f I and b decrease indefinitely and simultaneously.;

It remains to take into account the value of T$1” ! generated by the
rounding-off erroré. The effect of this error, as in the preceding
case, may be made imperceptible, if it is calculated with superfluous
declimal places.

Finally, for 6 > 1 we obtain the inequality

‘|&..+:I§(a+ :‘:I-IO);;:_ M+d (8)

from which it 1is evident that 1f 1 tends to zero, then, in order for
the computatlional process to converge, the magnitude of é% must be
limited and, in addition, € and (M + $)(86 — 1) must be arbitrarily
small [in the best case they decrease equally rapidly, i.e., they
have the same orders of smallness with respect to Y or g), when 1 and
h decrease simultaneously within limits].

Thus the presence of errors in the initial values and the effect
of rounding-off errors affect the final result most in the third
case. In this case no matter how small the 1nitial errors are, the
right side of (8) may at times become arbitrarily large.

Therefore we shall 1limit ourselves in all that follows basically
to the cases where 6‘§1). The question of decreasing the rounding-_
off error has been examined above and, 1n general, will not be examined
further. 1In other words, we shall assume that the rounding-off errors
é;yibé made insignificantly small, for all practical purposes, bj.
taking enbugh decimal places. Consequently, we shall henceforth
NTite out the estimates of & _. ., and shall at times omit the round-

7 8 rer

1ng;§ff errors $(1 — 6)"! and T#171,

-9-



The limitation which the choice of the spatial interval imposes
on the size of the time interval for obtalning a convergent compu-

tational process will be stated later.

3. General Linear Nonhomogeneous Equation of the

Second Order with Two Varliables

Let us examine the differential equation

ou al ou
"d—"“-é;,—+b.‘;-;+f".+l:(¢>°)~ . (9)

and seek the functlon u(x,t), which within the rectangle Q (of the
preceding section) will satisfy Eg. (9) and on the border of Q, will
satisfy the initial condition

ﬂ‘(x,o) =@1a) d ( 10)

and the boundary conditions
u(0,)=f1 (), wil,)=f,() (11)

We shall assume, for generality, that the coefficlents a,b,c, and g
are continuous functiens of the point (x,t) in Q; we shall assume that
the functions @(x), f,(t), f2(t) are also continuous in the

corresponding intervals

0o=Sx=Lad O§I§T- . '

In addition we shall assume that

e )= Ot FO=HO £

" Equation (9) may be replaced [5] by the finite-difference
equétion f :
B Unrss=%0a Uinat @ppos Uggaataioia Lot ( 12) - !

-10-



Estimates sultable for investigating convergence can be obtained

almost at the outset by determining the coefficients a of Formula

(12) in conformity with (4) and then by finding M,

- .
Bi, 8+] and 6.

For the coefficlents of a we obtain the formulas

L TSTY

Oy p ™

Lol L F

Here the previous nomenclature 1is kept; thus, for example a, X
: >

21”‘0 ]

Tipm= 1l —

h’
Iahi
» (‘+

(x

lai,a
»n

2 &,

o

value of a in the node (1ih, ki).

Then we obtain for (12)

1 . '
M--;.z_ (B My + M, g+ 25 M, bl nsd),

+ lf.v &

h b
2 841
— h bivl

)

(13)

where Mz, Ma, and My designate, respectively, the maximum absolute

values of the derivatives

u(x, 1)

Pu (xv 1)

tu(x,1)

o

ox3

dx. -

in Q. Further, by using Formula (5) we obtain

pba-l-""‘19 ﬂi.u+l=x.+
Sy -1 l‘lons
T
o <L

I‘h (S]]

and estimate (8) in this case assumes the form

G a4s] <o mee o (7 mee

_1)

where M is given by Formula (13), and €

11¢| mee ’

M+? (1)

designates the upper 1limit

of the absolute values of u(x, t) in the nodes of the network lying

on the sides of the rectangle Q:

11~

YT

1s the



t =0, x=0, x=1,

To ensure the validitiy of the estimate obtained (1%), i and h
should be chosen so that ;
I— —z-l-:-%-.— + =0,

1 +.{'_. !‘_"..'>o. _

in all the nodes lying within the rectangle Q..  The last two in-
‘equalities occur for all values of a and b and small values of h. If
we are interested in a value of | for some specifié value of h, then

for convergence of the computational process we must take

I A

R,
2Wmas -1 h’ld-n

provided that

20,2 — M e, >0

in all, the internal nodes of Q.
Now let the coefficlents of Eq. (9), a, b, and ¢, be constant

while ¢ £ 0. Then

N

ﬁ:r..&j-l _”‘l; ﬁ""‘#l"!"

and, consequently, when ¢ < 0 we are dealing with the first case of
section 2; but when ¢ = 0 we have the second case. Therefore if the

calculations are performed with the ald of the formula

!  h?
Uhl+l--za;{[ -_ 2+,-‘;—(! +IC)] l’iyl+ ( 1-‘!‘ %) Uﬁ},v.. +.

+ (l —_ ﬂ’-) Uiop x} + ! g
2a ,

-
= .

then in order to obtain an estimate suitable for any cg O we must

che L Lr IO
S L WD ik

-12-



use (7), although for ¢ < 0, in general, Estimatel(G) 18 more ad-
vantageoua.‘

Accordingly we obtain

T
Boorsl St F (M, - B M, 4 280 1| M, 12001 _

provided that

h|b) ke
o <* =T
Thus Pt Do
T 6M, 9
INE= +__(_____._ e 22
ooail St [ 2H_h,lIT«M.+z|b|M, A4
Finally let us examine the differential equation of heat propa-
gation of a thin thermally insulated rod of length L (with coeffi-~

cient of heat conductivity a®):

o_i_“, s

PP (15)

under Initial Condition (10) and Boundary Conditions (11).
The finlte-difference equatlion approximating this equation has

the form

. ) I '
Us [ 7O -(x - 2{}:-:-')Uh »+ (U(.p H + U‘+|. I) %. ( 16)

The computational process converges when ! and h satisfy the equa-

tion

o' _
o e = . ] —‘—.~ == —;—. ( 17)

[ Y

The estimate of the error in thls case has the form:

T 180 004l 28+ T( L T)

-13-



4. Numerical Solution of Heat-Conduction Equation

In this sectlion we shall examine an improved difference method

of solving the general differential equation of heat conduction

9,;“;"" ._g_--bu(ogr:y.; oIS, (18)
where b 1s a positlive constant and u(x,t) denotes the'temperature.

We arrive at Eq. (18) when studying the distribution of heat
in a bounded rod (0, 1), if we take into consideration the transfer
of heat to the external space. The case b = 0 (1.e., the casé of
the thermally insulated column) leads to Differential Equation (15).
Difference equations of high accuracy approximating (15) were studied
in another work [b]; later a whole series of works was devoted to
them among which we may note some listed in the references [7-13].

Although Eq. (18) is brought to the form (15) by substituting
u = e‘btv into 1t, it would nevertheless be lncorrect to neglect the
problems of direct approximation of the general equations by using
difference equations of high accuracy.

The baslce question which arises here consists in finding the
conditions under which the computational process converges, since
the method of approximating the differentilal équation by a difference
equation remains the same as before [5].

Convefgence occurs 1f, in addition to the limitations of Section
2, the product 1b (1 as before designates the spacing with respect.to
3) is changed 1n a special sggment ensuring a bounded change in.

A = h2/1a2, where h 1s the spacing with respect to x. An exact
enumeration of the conditions under which the process converges_is'

givenAlater. '
In order to derive an equation of great accuracy let us expand

-14~
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the differences Uier, x — Y4, k and uy _,, k-—ui, x 1n accordance

] - -
with Taylor's formula, set up the expression Usa1, x 2u1, k t Y~ x
and replace in it the derivatives with respect to-x according to the

""‘ ---( +u)

d'y
e --— dl' + Zb-—- + "I‘)

formulas

the lower one of which 1s obtained by differentlating the upper one and
by expressing thé derivati?es contalned in the derived equation in
terms of the right.side of the.upper one and the derivatives of |
lower order.
We find
L

'li+1.l+|‘(—pl—(2+ T+T{"—" LY Sud

' R bAY \ dui B w8 Pu(E)
=(—-— -1- ry : —— s
\a* ' 64 at 128 o 360 ag

(G- Dh<E<(i+ 1)k

Iet us now expand the differences ui, K+l — ui, X, ui, k42 =

Uy according to the same Taylor formula, multiply them respect-
2

ively by the arbitrary, as yet undetermined factors a and B, and add.

We obtain

au«.m—rﬁu..n+.—(¢+§)u‘.s=(¢+25)1du" Juon

dum al’ Pu(nn) | 4B Pulx
+(_+zﬁ) w T x

Subtracting the two latter equations term by term we obtain a

relationship permitting us to.write

o LBy agy B sy — (Weagoat Biogra) + )
ool A 19
+(2-¢—ﬁ+—;:—+ hb.)_"m-—Rmi ( -

128




- h' At

C-z—l—‘-’————m('—ﬂb.)a
A » ( 20)
S ey > T K
the remalnder term assuming the form
Ry P P 48P Pu@l K PG (21)
6 oy 3 a3 360 [
In addition, we find
PO U )
L e R

In order for the computational process to converge, we require
that the quantitiles a, B, BI 3 and the coefficients of Uy satlsfy
] F )
the inequalities
e o, .pA>0» '5.’.I>'°u
: J
-=+ﬁzz+-"—,f—j —'52:-
.\ & U 12
In this case, B; J§ B, 1.e., éé 1 and consequently Estimates
P
(6) and (7) will occur, respectively.

We thus obtain inequalities of the form

6—(1—A)A<Llo,
12 —(1—23)A=o,

64124 -1 —-A—-4"A<Lo, (22)
24— (18— 124)X 4 (1 — 34 + AN XS0,
where
B =
A=, -\ 7 (23)

Since we are interested in the case b 3 0, we rhould attribute S

only hon-negative values to A. On the other hand, A should be

bounded. Therefore A should assume values from the interval bounded .

-16-
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jby 0 and the lowest positive root rrom the number of roots of the
fol;owing equations. . N
{—2A=0, 1—Am0, 1—A—A'=0, 1—344A'=o0.
By calculating we find that this root is equal to 0.3819660...,

and consequently 1 must be such that
0= AL 0,3819660... (24)

and 1t 1s obvious that if A and A are chosen s0 that the second of
the inequalities from the top in (22) is satisfied, the first in-
equality in (22) will also be satisfiled.

Thus the first lnequality can be omitted and the possibility
of the remaining three inequalities for A's defined on segment
(24) may be investigated. Thus we should investigate .the functions
defined by the lnequalities

Fi(A, V=12 — (1 —28)3 S0,

F,(A, )=6 4 12A— (1 —A— 491 <o,
F,(A, N=24— (18— 128) 24 (1 — 38+ AN A So

Investigation shows that 1n the region D bounded by the segments

A=o0, A=0,3819660...
" and the curves

A 12 .
1—24"
9—6A+V 57 — 363 1 124°

- AT AT T -

i

the functions F;, F2, and Fa have negative signs and that

'

— 12 9—6a+V 37 jeA T il
‘ 1—2a S‘< ,_5374_*_;4--’-“ (25)

STOP Vet oo g

-
K

- - 17_



‘for any A of (24) and any point (A, A) lying in region D.

When A = 0, 1, e., wvhen b = 0, we hence obtain, in particular,

that for the computational process to converge for (15) realized with

the help of Formula (19) the values of A = h2/1a2 should be taken

from the interval

127 A5 9+ =V 5,

This inequality was obtained by another method by P. P. Yushkov [12].

The estimate of the error in approximating (18) by the difference

equation [obtained from another article [19]Véfter heglecting the

remainder term] has the form

ot et T L a) g om,+ 2M

!Cdn+;‘|.>_*5+—zgi~ (ia]-r-8p) sT e (26)
where M3 and Mg deslgnate, respectively, the greatest absolute values

of the partial derivatives

o u(x, 1) du(x,?)
on s dz*

in the rectangle Q, and € 1s the greatest value of the absolute error
in the initial values of u{x, t) in the nodes of the segments
t=0,t =1, x=0, x=L,

Iet us note, moreover, that the values of u(x,t) in the nodes of the
segments

t=0,x=0, x=1L
are known to us from the boundary conditions. The values of u(x, t)
in the nodes of the segment t = 1 may be calculated, for example,'
by using Taylor's formula [5, 13]..

.. Hence the followlng conclusion:

Theorem. If A = lb and A = h’/laz, during a change of h and A,

satisry Inequalities (24) and (25) , then Eq. (18) with Initial

IAE .S op bERE
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COndition (10) and Boundary Conditions (11) may be solved numerically
with the aid of Formula (19) without the remainder term Ri, x° The
error £(x, t) in each internal node of rectangle Q at the moment
t = T will satisfy Inequality (26).

In (19) and (20) let us now assume B = O and transform the formulas
'obtained by using relationships (23} Then the finite-difference
equation approximating differential Eq. (8) 1s transformed into

(1—2)
6

l]"m- (U‘+l"+ U‘-u l)+ :A+4 U‘. I‘(A< l); . ( 27)

the error in approximating this formula is

_Gp (-8 e | - APK Pus
6 " 1296 4° m 2160 @’
so that ‘

M_[(. —APM,  (1—ay M.] .
12964° 2160
By computation we verify that for (27)
Biveyym=1,
Blrovi=40u04j=0,58 —A+1>0."
But, since Ai, 8+J has a maximum at the point A = 0 and equals unity,
then & = 1, Thus, if we solve the general heat-conduction equation
with the aid of (27), we arrive at Eetimete (7), where ¢ 1s the
largest absolute error in the initial -data glven on the segments
t =0, x=0, and x = L,
The following rule for the numerical solution of Eq. (18) with
Conditions (10 and (11) stems from the preceding argumentss:
---  Rule. To solve Eq. (lé) numerically, the values of U(x, t) are
“calculated successively, layer by layer, with the ald of recursion

— e

formula 3 1 v
‘ o o U(.N-;"%[Ul-ha+(l+'—z-)uhl+ Uu_;,.](k-l. 2,0 ~

brZ
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s 6 h*

A =

1—4a ia®

fwhefe
o (ezza<),

and also the values of U1 . in tﬁe nodes of the first layer are found
L4 . .
from the values of U, ., in the nodes of the zero (initial) layer, T
4
known from (10). For the error which occurs from using this recursioh ;

" formula at the moment t = T the following estimate holds true

(1— Ay M, u—anv. g

lE(x.r)|§s+a'T[ e 0

The preceding rulé cah be fbrﬁﬁiéféé és fbiiBQQ when A = Q¢
For a numerical solution of Eq. (15) with Conditions (10) and
(11) the values of u(x, t) are calculated in the nodes of the network,

layer by layer, with the aid of the formula

UG +9=JERIFOGATUETRD (28)

and the inequallty

e =e+ T("'l—“:;"- +-‘:—). (29)

ensuing stemming from (7) allows us to estimate the error in the
numerical solution of Eq. (15) with the aild of (28) in any node Q
at any moment t g T.

There is one more conclusion from formula (28). We arriye at
this formula by setting A = 6 in (16), inequality (17) being satisfied
at thls value of A, and, consequently, the computational process
converges. But now we can no longer rightfully assert that at the
ﬁomén£'£ the error resulting from rejecting the remainder term és
Eg}iﬁitesimally small). and has at least the fourth order of smaliness
with respect to h, as follows from (29). This is a disadvantage of
‘this conclusion. ’ ST ?

STl i STCP HELT
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. When we finish the present section, we shall try to reduce the
description of the derivation of the high-accuracy difference formulas
‘ror (15) to the widest limits of generality.
| Using the expansions u(x, t) according to Tayldrfs fcrmula
;both with respect to both x and with respect to t, it is possiﬁle,

by repeating the -author's arguments [5, p. 83], to derive the formula

AxUlo Nx+AiU‘| L 21 + [ + A.U‘, n q“Xl.— U‘-‘oi + .
+(2—A. A,'-.-. —A-) U‘.l- '_R‘oh

vwhere the coefficients Ais A2seees A, satisfy the equations

Ap2dy 4 ... ndo=d,
INIPLY RS r.y Jpr .:_’!.x-,

A, +2°4, 4 ...+ Aa=3

For the remainder term R, , we obtain the estimate
k4

-

: L @D N ] Masy B
|Rhll§[21‘ m;k + l‘ll —T;:‘."f'_;j'_-

where, as before, A = h2/la2. .

The system found above, where A'# 0, has a solution, since its
determinant 1s nothing other than the product n! times the Vandermonde
determinant, of order n, composed of the numbers 1, 2,..., n, and there-
fore 1t 1s different from zero.

It would be intereéting to find the conditions which must be im-
posed on A and at which the estimates in Section 2 remain valid.

The criteria in Section 2 in the general case result in investigating
a very large number of inequalitles and therefore will hardly be
practlcable for investigating difrerence equations with a large

number of coefficients. ; 3

In the solution of multidimensional problems new questions arise,

STCA i STCP HEsE
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EWe shall therefore examine below equations with three and four
1nd§§éndéﬁ£“varihb1es. ‘
In addition, in Section 6 we shall derive difference cquations
in which the desired values‘or u(x, t) in the nodes of the segments
1=t ard :-(L-; x)l'(&.-x. 3,..) |
" are related to each other by a system of linear equations with a
number of equations equal to the number of unknowns.

Equations of thils type, possessing great accuracy, may be used
to determine the unknown values or‘g:fbf‘éééh"ié&ér'by solving a sys-
tem of linear algebraic equations, a circumstance which is especiallyg
attractive, because 1t frees the calculator from a diverging compu-
tational process (to which the use of the non-investigated recursion
formulas sometimes leads) but does not free him, of cow se, from
Investigating the error, in order to obtaln the final result with

the deslired degree of accuracy.

5. Concluding Remarks

This section contains a short critical survey of certailn investi-
gations devoted to the problems of approximating a one-dimensional
heat-conduction equation by means of difference equations in the di-
rection of the method and theory elaborated by the author [4, 5].

Assuming b = O in Relationships (19) and (20), we obtain for
the solutlion of the differential equation describing one-dimensional
heat propagation the finite-difference eugation )

i

) - & Ui' N-l"""p U‘a L2 2 Tl (Uupl + U(.;.;)‘-'I- (2 - C—p) U".-o, (30) -

—y ° 40— =

‘where: = 2 3o

— e T 6-21—-—% 2?2 - .
‘ 6

RS AN, —
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the remainder term has the form (21) This same erpreasion (36f“;aam

T"f’t

derived by us [5, p. 83] using the methed of undetermined coefficlients.
ECOncluding the derivation there, I remarked that it 1s possidble to
‘make up a set of difference eqnatiena of form (30) for approximating .

the heat-conductlon equation, given A, then I wrote out one such 7

‘formula corresponding to the case A = 16 and said that with its aid
a final result may be attained with an accuracy of h*, if the initial

values of u(x, t) are known with the same or greater accuracy. The

__-_¢.... e e e aam

prodf 1itself 1s elementary, therefore it 1s not given there. The |
] e
course of the proof is the same asjfor the general linear nonhomo-

geneous differential equation of the second order with two variables

or for an equation with three independent variables ( see author's
' !
papers [4, or 5 (Section 12)]. .

| Subsequently, in D. Yu. Panovfs manual [7, p. 111] a Difference j
'Equation (28) was derived without estimating the solution error.
The derlvatlon 1s made with the aid of arguments similar to ours
[5, Section 12]. |
As is easily noted, Formula (é8) ensues from (30) for A = 6
and requires no special derivation,
P. P. Yushkov, studying Fbrmuia (30) for other purposes in
his early work [12] also did not notice that Formula (28), in partic-.
ular, was derived from (30); but he suhsequently corrected this.

I am unconvinced that such renarks are generally desirable, but
. [ .

in the case in question they are apposite or at least pardonable

| «
‘and4may be continued. | ) .

§ o s

— - Further study of difference analogs of the unidimensional - - --

heat- conduction equation and the corresponding error is found, in T

e e 2 —————————

particular, in Milne's monograph [8, 14] and in the works of hla e
{

,_..___J_________.____._,__.__..__-._- 9. - !
'successors {9, 10,{11, 15] iy
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My remarks would be somewhat incomplete, if I did not note that
the proof of Eq. (28) and Estimate (29) given by the authors just
mentioned 1s based, firstly, on a method of constructing difference
analogs of differential equations developed by us previously [5] and,
secondly, on a method developed in other articles [4, 5] for estimating
' the error resulting from the approximation of a differential equation
by a difference equation.

The estimate obtéined by Milne [8, p. 134%; 14, p. 122] will
completely coincide.with ours (29), if in the latter € and $1”! are
deleted, 1.e., no account 1s taken, firstly, of the error in the
initilal values, and, secondly, of the rounding-off error, and the

nomenclature 18 changed.

6. Solving the Heat-Conduction Equaticn with

an Ald of a System of Equations

Up till now we have studied only the recursion formulas which
allow us to calculate the values of u step by step. The present
section 1s dedicated to the study of fhe heat-conduction equation
by a finite-difference method enabling us to find the values of u
for the next layer by solving a speclal linear system of algebraic
equations.

The method will be developed for application to (15), although
it is suitableAfor the general case,

It is true that the numerical solution of the heat-conduction’
equation by the method of this section 1s considerably more compli-
cated than the solution usiné recursion formulas, but on the other
hand, as has already been mentioned at the end of Section 4, it
frees the calculator from having to analyze the convergence of the

computational process.
-24.



Consequently, we are at times simply compelled to refrain from
using certain rebﬁrsion formulas which make the computation practically
unsuitable (unstable) as a result of the rapid growth of the error
in the solution even when the error in the initial Qalues is .
imperceptible or as a result of rounding-off errors.

The proposed method of constructing new formulas for the solu-
tion of the heat-conduction equation has an independent interest,
since, in the first place, 1t can be used for solving multidimensional
heat-conduction problems, and, secondly, it requires the use of
quadrature formulas, in contrast to methods which extensively use
formulas of numerical differentiation or to the method of undeter-
mined coefficients [5].

Among the many such formulas let us dwell on the followlng (3

18 considered as a parameter)
w(x— ko t)—2u (x5 )+ u(E+h )=

_li:.[,,;.(x_/., §) 4 10Uz (%, 1) 1 v (¥ B, 8)] — (31)

PG — SIS A
as the most sultable for our purposeé; i1t was used by the author
[16] to solve eigenvalue problems.
Let us now substitute t + 1 into (31) 1in place of t, add the
resulting formula term‘by term to Formula (31), and replace Uy in
the resulting expression by a-2ut. Let us transform the latter

expression by means of a trapezolidal formula of closed type:

Vol £ HD s, 0 (32)
=2 (s D Su 0+ 2 iy mu<n<t+h

and of two more of the same resulting from (32), by replacing X in

it by x-h or x + h. Reducing the similar terms, we arrive at the
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difference equation

(6 —NU(@r—h, t +1) —(12 1 104) U(x, t+0)+
46— U4 t+D+(6+NUE—h D+
—(r2— 1) U(x, )+ (6 + ) U+ 4, ‘)"t_’,

(33)

, the remalnder term R of which may be evaluated with the aid of the

‘inequality

4 I
< o hC'
“flg( 120 + 6A? )M'

where Mg 13 the greatest value of lUﬁ?)(x, t)l in rectangle Q.

If now
o
- _£6,
¥
then Eg. (33) will be a trinomial relating the unknown values

of U in three nodes of the layer t + 1 to its values belonging to
layer t. Similar equatlions may be written for each node of the layer
t + 1. The equations for the boundary nodes with abscissas x = h
and x = L-h will be binomial.

A trinomlal linear algebralc system of equations was studied
by us in an earlier work [17, section 25]. There an:analytical method
of solvlng a system was developed, according to which the exact
value of U(h, t) is found first, and then, using the equafions of

the given system,
U(2n, t), U(3h, t),...

are found by successive substitutions.
The system derived above may also be successfully solved by using
successive approximations. The convergence will be investigated

below.

-26-
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In the system consisting of equations of type (3})'5'and t
‘intervals may be'arbikrarily chosen, which advantageously distinguishes
the numerical method examined from the preceding one (Section 4).

When A = 6 we again arrive at recursion Formula (28).
It remains to show the convergence of the method of successive

approximations for (33). Let us rewrite it in the form
Us,t+ Dma[U(x — by 1+ )+ U (s + b 04 D) + 4 (5,0, (34)

where

-t (35)
the quantities A(x, t) depend on the -values of U of the preceding t
layer; therefore they are known. '

We shall consider that we have chosen (completelé arbitrarily)
the initial approximate values of U in the nodes Lelonging to the
segment t + 1. The result of substituting these values into the right
side of (34%) will, in general, be distinguished from u(x, t + 1);
we shall therefore estimate the closeness of the approximation to
u(x, t + 1).

We shall designate by £(x,t + 1) the difference between
u(x,t + 1) and the result of the substitutlion. Let ¢ designate the
mgximum absolute value of the difference between the exact values
of u and 1ts initlal values in the nodes. We shall estimate the
difference £(h, t + 1). Since u(0, t + 1) is known to us, we add it
to A(x,t) . |

Thus, having designated ‘the error in the first approximation
by €(x, t + 1), we shall verify that at the moment t + 1 the
following inequality will be true for 1t

& (bt + DS o,

-27-



That 1is,

6y (24, 14-DIS 8 (1 + e,
Similarly
& Gh ¢+ DS et + 6+ el
Continuing these estimates further, we find that rér any values
* of k the following lnequality will be fulfilled
6 bt 4 Dl S
if @ < 1, or, according to (35), 0< A< 6 .
Now let us estimate the closeness of the second approximation

tou(x, t +1). As in the preceding case

6 bt + D1 (2 Y

Continuing these estimates futher, we find that for any values of n

the following inequality is fulfilled

e s +ls (2 Yo

and the error.E(x, t + 1) will tend to zero

lim Ea(kh, t4 Dmo,

[ tad

if a(1-a}) !, 1.e., if a < 0.5. Since X\ belongs to the interval (0.6)
and the maximum value of a when A varies in that 1ntervaliis 0.5,
then by choosing h and 1 sqQ that 0 < A-¢ 6, we ensure the conver-
gence of the successive approximations for (34). .

In order to illustrate the use of Eq. (33), let us solve
numerically the differential equation

i (36)
, 9 oxt :

with the boundary conditions
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That is,

18, (26, t4-DIS 8 (1 + a)s.

Similarly:

&, Gh ¢+ DS & (1 + &4 af)s.

Continulng these estimates further, we find that for any values
* of k the following inequallty will be fulfilled
16 (khy 14 DS ——,
1—a

if a < 1, or, according to (35), 0< A < 6 .

Now let us estimate the closeness of the second approximation

to u(x, t + 1). As in the preceding case
a L]
6 Ghg 401 (-2 Y.
. I—a

Contlinuing these estimates futher, we find that for any values of n
the following inequality is fulfilled

a
T o

|Ea (kR £ 4+ DI (

)
) .
and the errorii(x, t + 1) will tend to zero

lim Eu(khl ‘+ I)-O.

[ 2ad ]

if a(1-a) "1, 1.e., 1f a < 0.5. Since X belongs to the interval (0.6)
and the maximum value of a when X varies in that 1nterval_1s 0.5,
then by choosing h and 1 sq that 0 < A-¢ 6, we ensure the conver-
gence of the successive approximations for (34). |

In order to 1llustrate the use of Eg. (33), let us solve
numerically the differential equation

w o (36)
o o -

with the boundary conditions
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Y-t 5 LM Xm0, Lm0 When w3, 2

and the initial conditions

x

. ;l-col
2'4
when t = 0,
Let us take h = 0.24, 1 = 0.048. Then
o :
— 1,2

and the difference equation in wﬁich we are interested will assume

the form : .
U(x, t4-D=02[U(x—b, s+ D)+ U(x+h, t + D] +

+0,3[U(x—h, )4 Ulx+ 4, 9)]. (37
If we successively set in it x = h, 2h, 3h, 4h and t = 0, we obtain

a system of equations

[y

U,13=0,2 Uy, + 0,72692,
Usii=0,2 (Us,s 4 Uy,)) + 0,46165,
Us1=0,2(Uy + Uy,y) 40433541,
Uisy=0,2 Uy + 0,17634,

the solution to which is given in Table 1. At the end of the table
the values of the exact solution are glven for comparison.
The values of u in the nodes of the succeeding layer t = 0.096

etc. may be calculated in similar fashion.

TABLE 1

Appro'xtn.'n values of u' Values of exact
podes of layer t ® 0,048 solution

ot 0,92:08 0,9210%
O34 0,87504 oM7597
0y4¥ 0,74511 074514

e 072 0‘5“25 0,54138
0,06 . 038461 0,28463
1,20 . o o
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In the case of more complex boundary conditions the méthbds
described above day be used almost without change. It is necessary
only to properly construct the equations, approximating the boundary
conditi&ns. ‘

Thus in the casé of two boundary conditions of the general type

u(o, 1) - g’y (0, 1) by (0, (38)
w(lon)-—ao (L 0)~ b 10y
it 1s necessary only to replace the partlal derivatlves appearing
in them accor&ing to the unilateral formulas of numerical differentia-
tion (cf. authar's earlier works [17, 18]).

But, unfortunately, when integrating with fhe aid of recursion i
formulas, such a replacement often leads to considerable distortion
of the solution, since in the actual calculation of the partial
derivatives the already calculated values of u(x, t), which were
subject to error, are used.

Therefore 1t 18 desirable to find some new means for approxi-
mating the boundary conditions when solving equations with the aid of
(34).

It 1s natural to expect that they may be obtalned by using for
the approximation both the given initial condlitions and the given
differential equations simultaneously. Let us now turn our attention
to the construction of these formulas. .

We shall begin with a consideration of the quadrature formula

(x b ) —u(x—h, )=2hu's(x — b, 1) + (39)

2 . .
C bR (e ) T R ) R,
where

2/ -

lR'I T (1]




Here Ms denotes the maximum value of ¥z (x )l in the region Q A
derivation of this formula appears on page 12i0 in one of the author's
. previous articles [19].

The method of constructing Eq (33) with the aid of (31) can
be applied almost without change to Eq. (39). After employing
trapezoidal formula (32), it 1s only necessary to replace x by h,
in order to obtain the final formula. We thus obtain the relation-

ship: _ .
(x+i 78 )!‘(“. 14 D= — 2h{u, (o, t+0)+ v, (0, ‘)]+U(1h,'l+l) +
o : . 44 . (40)
2 u(ah, )— :R_A.[u(h. 1+ 1) —u(h, )]— ( 1-- -:‘)U(O. l)‘-{-R '
' b} : 3

the remainder term R* of which may be evaluated with the aid of the

inequality
13 e
IR 4t M, FaM,

-

45 5

L3 .

where Ma i1s the maximum value of !u;(v,7)) 1in the rectangle Q, and

hl
R .
Determining the partial derivatives we(0, 1 Ipmad o', (0, 1) for

a, # 0 from the upper equation of (38) and substituting them into
(40) leads to the equation in which we are interested.

'Ait is also possible to derive exactly an equatlion similar fo
(40) contailning W (L, t+Immd vo(L, ). and then eliminate from
it the derivatives with respect to the spatial variable, emplbylng
for thils purpose the lower eguation in (38). It should be noted
only that before we proceed to construct the formula in which we
are interested we must replaée h by -h 1n Quadrature Formula (39)
and then set x = L - h in the formula thus obtained.
‘ As an example we shall again solve Differential Equation (36)
with the 1nitial condition
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. .
n(x, o):,zo o8 —Xx(0 Ty 1)
™ =2

and the boundary conditions

”'I(Oc [)go’ “(l' ’)-0'

i.e., we shall solve the problem of the cooling of a rod with ;
thermally insulated lateral surface, when the initial temperature
distribution 1s known, assuming that one of its ends is thermally
insulated, while the other 1s kept at a constant temperature O.

Let us take a = 1, h = 0.1, and 1 = 1 = 1/120; we then obtain:
A = 1.2 and the difference equation will again be of type (37).
By setting in 1t x = h, 2h, ..., 9h, successively, and t = O, we
obtain a system of nine equations in ten unknowns uk,1(k =0, 1,...,
9) 1 ' |

Ul'l =0,2 (l—"?.yl + U’q) + II.,';OG;."
Lyy=o0,2 (Upa+ Up)+1 1,27217,
U’" =0,2 (UlH + U:‘l) +‘ 10,56044,

‘Uul =0,2 (754 -+ Uya) -+ 9,58868,

the last of which satisfies the boundary condition u {1,—-;-5) = 0.
We obtaln the missing equation after satisfylng the boundary
condition in (40) u*(o, t) = 0 at the points (0, 0) and (O, T%ﬁ)‘

Rejecting the remainder term and taking h = 0.1, we obtain the follow-

U1 =0,2(U,,, + U,,y) + 8,35082,
Uy =0,2 (Uyyy + Usyy) + 6,96659,
Ui =0,2(Usyy + lj..,) -+ 5,38082,
U.,?—O,z (s, + T,,) + 3,66155,

. Upr=0,3U,,( + 1,85410,

ing formula

which 1s accurate up to hS.
We shall give the results of the computations (Table 2). The

values of the exact solution are given at the end of the table

for comparison.
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TABLE 2

Solution of Eq. (36) for nodes of the layer

t = 1/120 .

Initial values of u Approximate values in ]

in the nodes of nodes of the laysr . | Values of the
= the laysr t @ 0 . 31220 - | exact solution
° 30 19.59301 19,59300
o.1 19,75377 10,3574 19.35178
0,2 19,02113 18,63401 18.63405
o3 17.82013 37,4574 17.15749
o4 16,1 8034 15.85103 15.8:107
0,5 14,14214 13,85433 '3.35433
0,6 11,75578 1,81646 - 11,5164
0.7 . 9,07981 889503 8.80504
o8 6.a8os4 6,05456 6,03457
0.9 3.12869 i 3,06501 306502
1,0 ¢ . o ‘ (] (] ’

The system was solved by the iteration method.
The convergence of the iteration can be proven for the general
case, l.e., for a system of equations consisting of L’h - 1 equations

of type (34) and one more equation

8
3 2 -2 L 1) 14-B(h, A 0)
U °,'+I)= [U(nh,f‘}'l) U(hlt ] )]+ ’ ]
¢ 3+4r 3
which results from (40). Here B(h, A, t) is known, since 1t is a
function of the values of u in the preceding layer.
The following 1lnequality will hold true for the error in the

first approximation at the moment t + 1

a 3482
1—a 3447

1§ (ka2 4 D=

¢ (k=o,1,...),

provided that a < 1 and consequently that 0 < A < 6, in accordance
with (35). Continuing on, we find that

e 348\
ece e+ 05 (2 352 )

Thus the convergence of the interations 1s ensured‘by the condition:.
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6—2 318 u .
3 <:|( = _ (41)

64110 " 3142 A

From the amount by which the left side of this inequality differs
from unlty it 1s possible to Jjudge the rapldity with which ﬁn:

When A = 1.2, the left side of (41) 1s equal to is 21/52, and
consequently there i1s convergence. This value of A 13 not the best
of the number of possible values ensuring rapid convergence of the
iterations in our problem.

In order to approximate the boundary condition u*(o,t) = 0
it 1s also possible to use Taylor's formula, the given differential
equation, and Formula (32). We obtain: |

Uoym= Uyo + Um + @& —1) U,y
ne 1+ :

Then for the example considered above we arrive at the formula

AU..x"' 20Uy,  + noz(ZU,,. + Us) '

which 1s accurate up to h3.

7. Multidimensional Problems

In solving multidlimensional broblems questions arise which re-
guire explanations. Further examinations must be carried.out
separately for two-dimensional and three-dimenslonal space.

We shall first examine the propagation of heat in a thin plate
with a contour of arbitrary shape Y. For this case we have the

differential equation

(#2)

d_l_l_ w-ga®ly,
o



where A denotes the Laplaclan operator.
P i

AEF-;-—;-,,—.
u 1is the temperature of a certain point (x, y) at the moment t, and
a? 1s the thermal-diffusivity coefficient.
We are thus confronted with the problem of the propagation of
a temperature u(x, y, t) in a finite principal region D bounded by
the curve ¥y . The problem consists in finding a solution to Eg. (42)
which satisfies the initial condition and the boundary conditions.
Let us first examine the boundary-value problem, when the

initial temperature distributlion in the plate 1s known
0 (¥, 30 )mp (5 9) (43)

and during the whole time of observation the temperature on the edge

of the plate 'y is kept equal to

ulrs v ) y=f(x, 9 ) ( 4y)

where f(x, y, t) is a given function on the curve 7y, and ¥ and y are
the coordinates of a varlable polnt on this curve.

Equations (42) with Conditions (43) and (44%) has been examined
previously [4, 5]. The author [4] has examined an algebraic analog
which approximates the equation w’<+h an accuracy up to h2, where h
is a side of a square of the network, and in another paper [5] an
analog which approximates (42) with an accuracy up to h* was'given.
The latter analog, i.e., the improved difference equation ([5] p. 92)
approximating (42); has the form: '

U, x+1)-37‘6_{ Utx - by y b, 1)+ UGx — by y+h, )+ (45)
+ U(x—hv > '“‘ht ’)+l.(x+bo y—h’ ’)+4ll](x+hr7v ‘)+
LUy k) +U(x—h, » ) Uy - h, D]+ 161 (x, »t) }'
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where x and y are the coordinates of the main node of the square
network, 1.e., that (fixed) node (x, y) for which Equality (45) is
written, and 1 18 the spacing with respect to t.

For convenience Formula (45) is presented in the form:

4 R
U.,a...n:-.—xé—[ 4 Z UM+Z Une116Uq, 4 ]. (46)
. 3
=5

'

4 8
where 2 (respectively S ) 1s the sum of the values of U at
= k = .

k =1
the moment t in the network nodes at a distance h (respectively
V2 h) from the main node O.

Considerably later, Formula (U45) was derived by an operator
method by W. E. Milne ([8], p. 150; [14], p. 137) and written in

symbollic form with the ald of a pattern

i l '
tg 4 .|,

a6 ; U(xt yt’)"‘ (nT)

{ 16 4

4 | 1

U pt+ D=t 4
3o ¢

B

Then Eq. (47) was proven again ([11], p. 152; [15], p. 118) and

A

the proof was completed with thelremark that 1t could be convenlently
used for solving the heat-conduction equation in two spatial variables
on computing machlnes.

Hexagonal networks (these are known as iriangular networks
in the literature) for approxiuating Eqg. (42) have been studiéd

by P. P. Yushkov [20].
In none of these papers do we find an estimate of the error in

the numerical solution. Therefore Eq. (46) 1s generalized in this
sectlion for rhombic networks, and an estimate of the error in the nu-

merical solutlion of the heat-conduction equation found with the aild
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of this generalized formula is given. fhe generalized formula leads,
in particular, both to Formula (46) mentioned above and, consequently,
to the identical Formula (47), and also to a countless number of other
formulas which are of practical importance in certain cases.

All of these formulas are important in studying the propagation
. of heat 1n square, rhomblc, and hexagonal plates, although they may
also be successfully used for plates with any boundary configuration.
In these cases 1t 1s only necessary to add to formulas of type (46)
special formulas [6] for points adjoining the boundary. Afterwards,
the method developed by the author [6] for curvilinear boundaries
was used in several books [8, 14], § 65; [11], 15], § 8, 6; [21],
§ 12.

Fig. 1.

A. Let us now proceed to derive a formula for approximating
(42) .for the case of rhombic networks. We shall base the derivation
on a previously developed method [22], § 5, which involves constructing
the relationships between the values of the functlions of two .
variables. This will permit us to write out the expansion of
u(x, y, t) for the main node kx, ¥), which lies in the center of a
network rhombus with sides.2h (Fig. 1) and diagonals parallel to the

coordinate axes. The expansion has the form.
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s .
au(x,°y, ‘)_£ o+ Aht 8 u (x 3, )+ A5 (5 )+ R . (48)

where
A= —6

-A,-—zaiﬁ’wwa’.u. .
“oy= 144 3tg'w + gctg',
Y =4l Fu+Gite—n ATy (49)

+ (ot w—n) ot

. (50)
IR ,§;-s-[xz 8in” o cos® v — 4 (8in® w +- cos® w) -+ (sin @ 4- cos w)*IM,,

where u;, uz, us, and u, denote the values of u(x, ¥, t) at the

moment t at the vertices of the rhombus [with center in the main node

(x, y)] with sides 2h and diagonals‘ parallel to the céordinate axes

( the odd -subscripts refer to vertices lying on the horizontal diagonal,

and the even, to those lying on the vertical diagonal); us, Us, U7, |

and ug denote the values of u(x, y, t) at the mid-points of the sides

of the same rhombus, ® is the value of the angles formed by the hori-

zontal dlagonal of the rhombus wilth the sides of the rhombus; and

Me denotes (here and henceforth) the upper bound of the values of

o'y
ox®

'u

v | ‘ o'y
ox oyt l | T ays

o

within a certain three-dimensional region of space x, y, and t in -
which the solution is sought.
In order for the coefficients of ay to be non-negative, in all

that follows @ will be determined by the condition:

%<u§l‘_; (51)




From (49) it follows that
(52)

= [
f==1

Then if, together with (48) and (42), we make use of the Taylor
. serles expansions of u(x, y, t + 1) and u(x, y, t + 21) exactly as

‘ we did in the.one-dlemensional case (§%), we obtain:

& u(x, y,!+l)+§u(x.y,‘+ 2[)+(a,—¢-—5)u(x,].t)-

(53)
-Za‘u‘+x+ak,+:sk..
=1
where .
'¢=——2A,).+2A At p2) — 432 8in? 0 cos® @, 4
$=0,5 A A — 42" == —31 Tzl'sm'mcos'm. (54
. ,‘l
A= ’
la*
while for R; and R we have the 1nequa11t1es
IRy 2 M g S2MM (53
3 FTUN

Let us now choose A such as to make B equal to zefo. This will
allow us to discard the term Bu(x, y, t + 21) in (53), and we shall
arrive at a recursion for;ula allowing us to determine the values of
u at the moment t + 1 from 1its values at the moment t.

Moreover, we find from Egqs. (54) that

4 .
;.- 9 . 1_ xls
sin’ w cos® @ sin'w cos’ @
6

sin* w cos’ @

8,— & —fm8—

Consequently, when B =
6 —8sin’wcos® @

“(’.y-"'}'l)"; 9 "(’v’-‘)"' ( 6)
. 5
s .
sm’ ™ cos’ sin® © cos’w :
+ R+ —-"-——R
e

It 18 easy to see that

6 —8sin*wcos’w>o.
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We also know that all the ai's, in (49) are greater th.an or
equal to zero, 1f‘ w 1ies in (51). Consequently variation of o be-
tween -g andg entalis the non-negativity of the coefficients of
Eq. (56) . In all that follows, therefore, let us agree to consicier
Formula (56) for those values of ® for which Inequality (51) 1is .valid.

Thus 1n order for the computational process generated by Formula
(56) to converge, it 1is enought that the relationship between the
h and 1 intervals be taken such that .

e=A<8.

In any case, if o Selongs to (5i) , we obtain by using (56) and

(52)

Frasm 3 ST (a8,

ﬂduual: A‘,..”z'l, Aaﬂ‘l,
and consequently the error in the numerical solution to (42) found
with the aid of (56) (without the remainder term) in any node of the

rhomblc network at any moment t ' T will satisfy the inequalilty

E(= 3, Ol=¢ + TT,(MH).

where . sintvcos’ v
M= R,|+ —————IR].

where Inequalities (50) and (55) should be fulfilled for R; and R.
Now Zet the boundary contour 7y be the network contour, 1;e., it
consists of the nodes and 1links of the rhomblc network. Then in thg
estimate Just obtained € should be tkan to mean the absolute value of
the error in the function u(xf ¥, t) (0 t& T 4in the nodes of 7.
Recalllng the estimates for R, and R, we obtain the following theorem:
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If the solution of Eq. (42) with Conditions (43) and (44) 1is

sought with the aid of Formula (56) (without the remainder term),

then the error in any node of the network (1lying inside 7y) at the

moment of t + T satlsfies the inequality.

e, v, TS oot SO TMAY (57)

250

where ) \
G=1605in' wcos' w + 12sinwcos?w 4 (Rin®w 4 cos*w) -}

-+ (sinm—!—cosw)‘(—g- o l;-)
In the case of a squaré network with the diagonals of the squares
parallel to the coordinates axes w = %, i.e., A = 6, from 1t we can
deduce the following theorem concerning the estimate of the error in

the solution:

Theorem. Let the solution to Eq. (%42) with Conditions (43)

and (44) be sought with the aid of the formula

U+ D= (G + U+ Ly + Vet | (58)
_1_4(L",‘+ U;,";‘ U,,‘ **' U" ‘) -.L ](\ q.’ ‘]'

where U, . 18 the value of U(x, y, t) at the moment t at the center

of the network square.

Then the error in any network node (lying inside y) at the

moment t = T, in accordance with (57), satisfies the inequality

2a*TMht , (59)-

. 35, 30 D Ze+ -

where h 18 the side of a square (inclined at an angle of 45° to the

x-axis!.

The theorem is proven in the same way for hexagonal networks

with a network contour y consisting of the nodes and 1inks of the

. B1a



network. For such a network the following theorem applies.

Theorem. If the solution to Eq. (42) with Conditions (43) and

(44) 1s sought with the aid of the formula

6Up i+ Uyt Uy e U+ Uy 1 + Usy + Uy,

U‘f i 13

« where U, 1s the value of U(x, y, t) at the moment t at the center

of a certaln hexagon of the network, while a Uk't(k =1, 3, 5, 6, 7,
2

8) 1s the value at its vertices, then the error in any network node

(1ying inside y) at the moment t = T satisfies the inequality

1 9,0 <o S TMN (60)

where h 1s the slide of a hexagon of the network.

To prove this theorem, 1t is enough to take @ = ¥ 1n (56) and
(57 .

For the sake of completeness, let us consider a square network
wlth the sides of the squares parallel to the coordinate axes. Let

us return to Formula (48) and in it set
. 8 ._‘.‘ 8
a’.=20' A‘:=—-6. A,”"-l’a Zaiui-'%Lu.-*-Zut"
P = T oe=1 L A=s
in accordance with Formula (13) derived in chapter I (§ 2) in our
earlier publication [5]. For this case Estimate (50) is already
invalid. Calculatlon shows that 1t should be replaced by:
iRy = JTMA
T4 _
let us now examine the formula thus obtained, together with (53) and

the left-hand equalities in (54), when
A.-—‘G‘, ‘A,- —

5.
—2—, ﬁqo.-

We then obtain A = 6 and a = 36, so that

~42a

A o mt———— e b+ e en i s



M=MA
. 60

For these values of A, a, and M we arrive at Formula (46), for which

S TMAS
10 ¢

By IS e+ , | (61)

where h is the side of a square of the network.

As 1is apparent, Formula (46) and (48) have approximately the
same degrees of accuracy.

Thus in view of Estimates (59), (60), and (61) we arrive at an
interesting result; namely, that out of the three formulas with
identical h's Just examined [for the numerical solution of Eq. (42)]
the formula for hexagonal networks generally yields the most accurate
result. )

Let us now proceed to a consideration of the general case. Let
us determine a and B in (54) with the requirements thét for any
rhombic networks characterized by the two numbers h and ® and the
- time interval 1, i.e., for any A which figufes in (54), the in-
equalities ) '

—az=z0, —ayta+f=o, ﬁ?o.
are fulfilled. In accordance with the discussions in § 2, this is
necessary for the convergence of the computational process and for the
estimate of the accuracy ahcleved.

Using (54), we can verify that the first and last of these three
inequalities are fulfilled simultaneously when

ey
for all values of w in the interval (51); méreover, a study of the

second lnequality indicates that 1t can be realized for any 1h (51)

43



when

9—=% i< 9%t
. 48in'wcos’ v 4sin*wcos’e

where

=V 57 —é6gsin‘wcosiw . .

Furthermore, no matter what the value of  is from (51), the

last 1nequality may be replaced by the inequality

3 <2 +T (62)
sin'w cos’w 4 8in% w cos o® ,

Thus, A and ®, determined by Inegqualities (51) and (62), satis-
fy all three 1nequélities considered above and, consequently,
guarantee the convergence of the computational process carrled out
for a rhombic network with the ald of Formula (53), in which it is
necessary to take a and B in accordance with Formulas (5%), to re-

place the sum =2 ayuy in accordance with (49), to substitute
1

,4_;-;tgtm-{.3cot=m——91+2).'sin’weos’m

in place of the quantity ag — a — B, and to solve the equation ob-
tained for u(x, y, t + 21).

It remains to give estimate of the error in the numerilcal
solution sought with the aid of the recursion formula Just obtained.

For this purpose, we should evaluate

M=p(RI+ = |R,| +BIR, ), (63)

using Inequalities (50) and (55). From this there results the
following theorem:
If the solution to Eq. '(uz) with Conditions (43) and (44) 1s

sought with the ald of recursion Formula (53) solved relative to

u(x, ¥y, t + 21), then the error in any node of a rhombic network

(1ying inside y) at the moment t = T satisfies the inequality
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HR ;tc+_'f_(u+».

provided that a and 8, figuringz in (63), are determined by Eqs. (54,

in which A and w must be taken in accordancg with Inequalities (51)

and (62).

Here & also denotes the maximum absolute error with which the

.

values of u(x, y, t) are calculated in the nodes of the network
contour ¥ when 0‘< t g T and in its internal nodes when t = 0 and
t =1.

If these values are computed to an accuracy of h*, then we obtain
the values of U at the moment T with the same accuracy.

Setting o = %, we obtain from (62) for a square network (with
the diagonals of the squares parallel to the coordinate axes) the

inequality .

23S+ Var (64)

and the computational process carrled out with the ald of the formula
U,, ..,,.;-(o.s A — 32)" [(A* — 12R) Uy, 044 — (0,5 A* — 9A - 20) Up e+

+z: Um-}-4za Us 4} oot

N =3 Y3 . .
which results from (53), will converge if A is contained in the inter-

val of (64).

(65)

As soon as A satisfiles (64), Eq. (65) leads to values of U

subject to errors determined by the inequallty

L2 Nbh—72 o
! =~ .
Ry dlise+ s osE—ga " TM.h

If we now set A = 12, we may write Eg. (65) in the form

4
Z Ulll‘*“»Z Ulll+ 16 U..l -
he=1 ’ =9 *

36

U. » ;4’[ -
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In this case the error &(x, y, T in the internal nodés of the
network contour at the moment T satisfies the inequality

8¢ D Se A2T0E

The method set forth abbve for solving Eq. (42) 1s also appli-
cable to curvllinear boundarles. In this case it 138 only necessary
to set up and use speclal formulas for the polnts adjoining the
boundary, exactly as was done in our previous publication [6, § T7].

B. Using Formulas (7) and (8) from the author's earlier paper
[23], we may in a way similar to what was done for the one-dimen-
slonal case, derive a system of five-term linear algebralc equations
for the numerical solution of (42). The solution of such systems
requires falrly tedious work, if h is small, and the number of equa-
tions 1s consequently large, even if the method of successive approxi-
mations 1s used. However, the possibility of using the method for
any spacling relationships makes 1t nonetheless practical. We shall
therefore describe the method in its general outlines.

Let us rewrite Formula (7) of the aforementioned paper [23]
in the form T

4 3 4
- )
25‘.;:.,,-42 e + L Upyt - o,sk’[ 8d 4y, Z‘Aﬂg, ]. (66)

k=i k=3 © k=g

N,

where LY denotes the values of u(x, ¥, t) 1n the specially selected
»
nodes of the square network [used for (46) ] at the moment t. Formula

(66) 1s accurate up to hS.

Substituting t + ! into (66) in place of t, we add the formula
obtained to Formula (66), replace

-\"hl(l'-ov i, 2, 3. 4)
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by a'au't(xk, 2 t) in the sum, and use Eq. (32), which 18 written
for two spatial coordinates.

Thus we obtain the equation

R

4 ' T
(204 84) Upstga— (4 - 4) {v_: U t44— Z Ursga= (67)
-y -~
8

[ Y3

: 4
=—(20 SR Upt+(4+ x)}: Unt-i- 2: Use
’ , =3 =$

After writing out these équations for all the internal nodes
of a square plate, we arrive at a system consisting of n linear
equations in n unkﬁown values of the function u(x, y, t + 1), where
n 1s the number of internal nodes of the square bounding the plate.

The system thus obtained may be solved by the 1teration'method.
For the proof of the convergence of the iteration process for any

initilal approximations of U £+ 1 it 1s sufficient to require that

»

A
la®

=AT4

In practical computations we shall assume that the values of U ¢

»
already computed on the preceding layer are taken as the initial
approximation for Uk, t + 1

We shall rewrite (67) in the form

. y . ‘ |
Uy, I+I=CZ Ubia+ b Z Upseyi + 4, (68)
where . k=1 =5 . .
. - . a== b ;._ N f)ﬂ ,
¢ 208 20484

4 8 )
Ar=b[(4 + ) Z Um-%—z Ui, ¢ — (30— 82) Unye)-

Bz=1 k=g
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Thus, the quantities At are linear combinations of the Qalues
of U at the nodal points at the moment t, combinations which shall
hereafter be assumed to have been computed, i1.e., the values of At
in (68) will hereafter be assured to bte known.

We shall now take the numbers U as the initial (zero).

k,t
approximation and set

(U g - Unefclse

throughout the entire square region. The valﬁes of Uk are known
L4

t+1

to us in the boundary nodes, and therefore the difference between

Uk t+ 1 and 1ts zero approximations will be assumed equal to zero
Ed

in the boundary nodes.

Let us now compute the values of U in the network nodes closest

to the boundary of the square vy, using for this purpose the values'or

u given on ¥ at the moment t + 1 and the initlial system of values

of Uy 41

way, at least three values of U 1n nodes lying on 7y will figure

for all the other nodes encountered in (68). In this

in each of Egs. (68). Therefore, after denoting the error of the

first approximation by £,(x, y, t), we shall verify that at the moment

! it satisfles the inequality
15,5y 2+ D) =(a+-2b)2=ae, (69)

vhere i
a1t 3%
204807
Thus Estimate (69) holds true along the square v,, on which the
boundary nodes lie.

Then, using the values obtained for U in the nodes of 7v,,

s t+1
the initial system of values, and Formula (68), we calculate the

values of U in the nodes of the boundary Yy, of the square which 1is
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next in proximity after 7y,;. For the error in the first approkimation
at the nodes of Yz, the estimate

B+ DTa - 2b)ae (384 28)87 a(1+a)s.
will be valid. Analogously

(x4 D] ~2(a + 20) e (1 +2)2 + (30 2BV =
Te(1+ad-al)s,

where €, now denotes the error in the first approximation in the nodes

‘of the boundary 7ys of the square which 1s next in proximity.
Continuing these estimates for [68) with the non-negative

coefficlents a and b until all the nodes of the main square are

exhausted, we verify that the estimate

iy DS %y,
] 1—a

finally holds for the first approximation, since a < 1  for any 1§ 4

Using the first approximations, we calculate the second approxi-
mations, etc. by means of Formula (68) in a way similar to that used
when we calculated the first approximations, etc. The error

estimate for the m-th approximation has the form:

[ NCE? g+0l§( « )‘..

1—8
whence follows the convergence of the successive approximations when

A rss
"7
The most rapld convergence occurs when A = 4, In this case
Formula (67) assumes the simple form:
8 . 4 K .
saUgptyi= Ui+ 8 Z Ui+ Z U+ 12 Uy e (70)
h.=g =5 s =g
Using (70), we arrive finally at a system consisting of five-

term equations relating the unknown values of u in five network nodes
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at the moment ¢t + 1 to its nine known values at the nodes at the mo-
ment t. .
We obtain another formula for (42) by using Formula (8) from

the author's aforementioned paper [23]). Calculation ylelds the formula:

4 3
(20 + 10}) UO-'-H"4Z Ui+ (3 —O.Sl)z Ul.u.u-l-
=5 Ll ] .

*z=1

4 8 .
+"Z U"‘+(‘+°»S>‘)Z‘ Uhl"‘(zo—'IOK)Unlt
=$

which assumes the simple form

4 : 4 8
40 U.)‘+‘=4 Z Lyb' t4d + 4 Z Ul.‘ +2 z Ul, 'y
-y b=y =g

for A = 2.

These formulas are accurate up to h®. Finally it is possible
to prove, although we shall not take the time to do so, however,
that i1f the general formula of the preceding paragraph is solved for
Uo, t+1 and 1f an iteration is formed with the aid of the formula
obtained, then convergence will take place for all values of A for
which a -

;—<:1;§14.

The method may be applled to reglons with curvilinear boundaries;
in these cases 1t 18 only necessary to set up and.use special formulas
at the points adjoining the boundary.

Thus, using Formula (6.2) in the literature [22] for the layers
tand t + 1, Eq. (42), and a formula of type (32) written for two

spatlal coordinates, we obtain for the boundary polnts the formula




{ Usoraa Usuas
-— In L T '
(k, Fhh "'/ﬂ) e h+la,( +— T
! U 4 bad lf‘\lol "vl ’sl
+":""' ( hy + )+ hy "'”' ( )+

":-c .,e ( . ")U
+ ll: h.( ’,3 ) n "I‘ At i

-where U, , 18 the value of U at the moment t at a boundary point with
b4 .

the number v, while U,,t, Uz,t, Us,t, Us,t are the values of U 1n
the nodes separated from the main node (the node with the number v)
by a distance of h, (to the left) and hp (to the right) in the direc-
tion of the horizontal and hs (upwards) and he (downwards) in the |
direction of the vertical, respectively, the values of the function
u(x, y, t + 1), denoted by Uy, g4 204 Uy t“(k =1, 2, 3, h) |

2
have the same meanling. As for A, it is equal as before to h™_ ’

la®
where h 1s the side of a square of a uniform netwcrk, so that

h, g h(1 =1, 2, 3, ¥.

In the case of boundary conditions of the general type 1t 1s
necessary to have a formula to approximate the normal derivative.

We shall derive one such formula, which i1s accurate up to h®. More
accurate formulas may be obtained by using relationships (31), (32),
and (42) for two spatial cocrdinates.

-Iet us consider the edge of a plate parallel to the y'%11§{#"
and let us set up a relationship for the boundary condition containing
the derivative with respect to the direction of the normal perpendicu-
lar to this edge.

For this purpose, let us represent u(x.+h, ¥y, t) in the form
. _ A .
u(x-h » H)=u (v 3 ) -+ h's (%0 ¥ )+ ry ¥ (% 3 ) + Ry .

Expanding the functions u(x, y — h, t) and u(x, y + h,t) according

- -5t~



to Taylor's formula, we find:
w(, yFh )= 2o 30 )+ uls, y— by 1) =A%, (5 3,0+ Ry
Therefore, 1f we discard the remainder term and use the relationships

thus obtained, we may write the equality
au{x+h ¥ 0-Lu(x, vy =h ) —quix, x, ) L u(x, y—h f)=
=280y (2, ¥y 1)+~ B2Au (¥, 3 1),

Next, let us write out the same equality for the moment t + 1,
add it to the preceding one, and then convért the relationship
obtalned, using for this purpose Formula (32) written for two spatial
coordinates. .

As a result we obtain.

el g D=2 (x5, 1) Sy (x y, 8- D) -
U ythtL D2 (v b,y 02 D) u(y, y—Ah, t-—j-9— (71)

—(4—20)u(x 3,8 u(x, y—h ) -ulx, v b Q +an(xLh,y, 0..

If Eq. (42) 1s solved with the ald of Formula (70), then in (71)
it is necessary to take A = 4 and to replace the partial derivatives
with respect to x in accordance with ﬁhe boundary condition on the
plate edge under consideration. |

It 1s easy to derive formulas similar to (71) for the remaining
three edges of the plate.

C. Let us consider the problem of the propagation of heat in a
body bounded by a surface S, when the inlitial temperature inside
the body assumes the values f(x, ¥, z), while the boundary (the
surface S bounding the body) 1s maintained at the temperature
o(x, y, z, t) at all t > O.

It 1s requlired to calculate the temperature of the body at
each of its poilnts at any moment of time.

The solution to the problem reduces to integration of the
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the three-dimensional equation

. Ou ) _ 0! «5’ ]
o (A—_-,,:s- 'z;f'*'—ozf)' (72

with the boundary condition
(% 1, ) were £ >0
and the initial condition

u(vy ¥, T 0V= f (%, 35 Q-

Let us consider a cublc network 1n a space with a reétangular
coordinate system X, y, 2 with the faces of the cubes of the network
parallel to the coordinate planes.

Let us now take a cube of the network with edges 2h and 1its
center in the node marked O (main node) ; its upper face shall be
called the first square, the cross sectlon of the cubg cut by a plane
passing through the point O parallel to the upper face, the second
square; and finally the lower face shall be called the third square.

The values of u at the moment t satisfy [23) in the network

nodes the relationships.

6 18
2ylg=2 Z eyt Z 1ay ¢ — 6M* A uge - 0,5 B A%g,0— R, (73)
1==1 £-=27
6 26 ’ "
56"9,!:3 Z u.'.:+ Z Upyp=12 I 3AY "o,g‘—h‘.\u.,‘ __R.. ( 7 )
=1 r=19 T,

]
where up,t 1s the value of u(x, y, 2, t) in the main node O; X Uy

1=17
is the sum of the values of u at the mid-points of the sides of

the second square and 1n the centers of the second and third sguares,

268
= u

p,t denotes the sum of the values of u at the vertices of the
r=19 *?

t

18
first and third squares; and, finally, £ 1s the sum of the values
k=T



of u at the mid-points of the sides of the first and third squares

and at the vertices of the second square. The errors incurred from

discarding the remainder terms in (73) and (74) are estimated by

the 1lneqgualities:

where Mg is the maximum absolute value of the sixth-order partial
derivatives of u(x, y, 2z, t) inside S.
Next, we use (as was done above in the two-dimensional case),

together with (73) and (74), the Taylor expansions with respect to

t for

where a and B are undetermined factors, and we choose a and f 80 as

] N
13 MAS - Rt a1 MM !
’ H == M
20 0 i

‘R|_,—
FRA TR

“u(".v Holand ;3“ ('\:' M3 42,

to obtain relationships which are accurate to hS.

We thus find two general formulas. The first

6

§rl°, (4l = — zuo,‘“-(z; - d-——;')uo,t -2 Z Wit - (75)

where

IS ¢

'8
R
+ E ¢ Ry .

B="
‘

h!
- .a 2 - oo f-
Am [2 =21, ‘J=—)l-->0,)l. (/.—<--z.‘;2—),

for which we shall have

The second

|R:'=_§ R = laRy| -~ 3Ryt

6 26 " (76)

i:‘uh 14287 — d Uoetad s E s - "y, ¢

i=1 r=19

—(5(““1".'3)";»“5'13;, !

valid for any a and B such that

A

-

Z=24A -~ 2A%, ;=—-6).+;.=(;._—.____ :

a® )’ i
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with the remainder term satisfying the inequality
' RZIR - xRy R

In the last two inequalities the estimates

OMME L 36 M
s g =S T .

253 LT 23

Ryl i
should be fulfilled for R; and Ry.
When A = 6 there result as a speclal case from Formulas
(75) and (76) the formulas examined in the literature [24]:

’ 6 LI
l-o"‘_,"-_-_l_[z Z lr.i,"f.'z L’h"‘!‘!z U.yl]’
sl o

k=3

- o 20
I,'o-¢+u=-=-l[8 Z l's.e"f—z Uioo 416 Ugye ]
72

§==1 r=1v

The coefficlents in these formulas are such that they satisfy
(§ 2) all the requirements for the convergence of the computational

process. It follows from thls same Section 2 that the lnequalitles

— ., 7a*TMA
o & ————
30

3a°TM A

Aoy )
must hold true for the errors ln these formulas at the moment T.

I’I

S

Such estimates can be obtained for the general férmulas, ir
the variatlions in A are 1imited by certaln inequalltles guaranteelng
the non-negativity of the coefflclents in the formulas under considera-
tion.

Thus for Formula (75) the inequalities

. — o0, T--5I324, IO

should be fulfilled.

Study of these inequalities shows that they are fulfilled
simultaneously for each A of the interval

12.000 794133

In the case of Formula (76) we have

-

127 a75 14
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D. Here aiso the prcblem of the numerical solution of fhe
three-dimensional heat-conduction equation may be reduced to a system
of linear algebralc equations. For this, we take Eq. (73), discard
the remainder term, and eliminate A%Up, from the equality obtained,
using for this purpose the relationship

6
ht Z AU, = 6B AUy, - BA Do (77
i=1
which 1s obtaired from Eq. (12) in the literature [23], if we replace
u by 4 u in (12), multiply the equality obtained by h®, and discard
the remainder term. .

Then we can write

4\lo,t-4z Uit Z r vl’_(‘h"‘lrov"—h ZAU""

=1 l=7

We substitute t + 1 1n place of t in this formula, and the
formula cbtained to the original formula, replace Au ,t(k =0, 1,...,6)
by a'zu't(xk, Vs Zyo t) in the sum, and use an equality simi - to
(32) written for three spatial coordinates.

We thus obtain the relationship

(48-}-12/)1 o l-u=(-l‘—2/)Z "‘4-3"'2 ZL"”"'*'

=1 7

@+ )Zl ht+SZl hl—(-lb—IZI)lT.,‘

and another =1

(56 122) 174, ¢44== (*—ZI)Z’ m.u+z Uit

r=ig9

(84 "/)Z L’.,¢+Z Uve — (56 — 128) U g,

=] . '-19

constructed with the aid of (74) and (77).
The number of these formulas may easlly be 1lncreased by using

the equalities presented in the literature [23].
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For example, we add to these formulas one more formula
. . 6 .26
(224 - 804) '».ml&-"'szz: Ui (4—22) Z l—’nl+l.+

i=1 raig (78)
26
+ 4 +=1)Z Uoe-= ’*}—\ Uis— (224 — S0a)Us,
r=J9 l'-l
hz
. which, when A = — = 2, assumes the form
la
4bU.9t+l—4Z,hl+l—Zl rvlT‘LLnl"bUgﬂ (79)
. i=1 r=19 =g,

Formula (78) is derived in the same way as the ﬁreceding two
by using (74) and the equality.
;,:z A1y, = SAAT g+ 448 Uy, 00
r=19
which we find using Eq. (17) from the literature [23].
Formula (78) leads to a system of equations which may be £:-lved
by the method of successive approximations. Convergence takes place

for values of A satisfylng the lnequality

i.<}.:_“:.
3

We arrive at this inequality by following, in a general way, the
discussions presented above for the two-dimensional case.

For this purpose, let us considef a cube Q; with faces parallel
to the coordinate planes and located at a distance h from the boundary
under the assumﬁtion that Q; lies wholly inside the given cube for
which Eq. (72) is solved. Network nodes lying on Q; shall be called
first-proximity nodes. Next, we take a cube (lying wholly inside Q,)
again with faces parallel to the coordinate planes and located at

a distance h from the corresponding faces of Q;, and the nodes

- 5.7_



lying on 1t shall be called second-proximity nodes, etc. It remains
to make estimates of the error in the solution along the cubes ;, 2,
.+ss. On Which the nodes lie, 1n exactly the same way as we estimated
the error along the squares 7;; Y2,... above.

We shall now solve an example which explains how the method
" that has been set forth is applied to physical problems. Assume that
a homogeneous cube of cast iron with side L = 1 m 1s belng cooled
and that a temperszt ure of 0°C is maintailned on all the faces of the
cube throughout the entlre cooling process. It 1s required to find
the temperature distribution inside the cube at the moment of
time T = 1.6 hrs, when the initial temperature is distributed (inside
the cube) in the following way:

(80)

(s, 1 50 0)= S0 sin = RN FYEIN -

In order to solve our problem, we must integrate Differential
Equation (72) with Initial Condition (80) and the boundary condition
u=0 (81)

for t 3 O.
7
In determining the thermal diffusivity of cast iron we assume

that the thermal conductivity is

koal
heeme O

A=54

the specific heat

¢=0,12 ._’”‘.‘__.
xg * °c, and
the specific gravity

t=7200. 88
. M
where kcal, as usual, means kilocalorie (large calorie). . i

. |



Next, let us proceed to calculate the thermal diffusivity.

According to the data of the preceding paragraph, we find:

A »3
V= . =0,062¢

r

We are now abie to integrate Eq. (72) numer;cally. For this purpose,
' let us take the length of an edge of a network cube h = 0.2 and use
a seven-term equality of type (79) , for which the spacing with
respect to t should satisfy the condition

l= 10932 (Mm,.

24!

The initial values of the temperature in the network nodes are

calculated from (80).

>.=,T 1=—
11212 (1 (213132 .
2 13 {3 |2 314 |4 |3
2 |3 |3 |2 . (314 |4 |3
1 212 1 21313 12
{
s 3 -4
1.5 {S
| L ! B
t2 13 342! by 12 Y2 |1
) et I -
(3 |49 (3 2 1313 (2|
J |4 143 21313 {2 i
1 }
; —
2 13 13 |2 1 1212 |1
] Fig. 2.



In set%ing up the equations it 1is advantageous to use the cross

sections'of the cube cut by the planes

{.-_:—(k-h 2, 3 )

perpendicular to its edges. These cross sections are presented in
« Fig. 2; in them certain nodes [viz. those in which the values of
uw(x, ¥, z, t} coincide due to the symmetrical temperature distribu-
tion] are designated by the same numbers.

In the network nodes 1lylng on thé boundaries of these squares,
as well as on the faces of the cube z = 0 and z = 1, the temperature
at any moment of time should be taken equal to zero, in accordance
with (81).

Applying Formula (79) to our example (to the nodes designated

in Fig. 2), we obtain a system of linear equations:

SU120 3,10 — 80+ 12 Ugpe + Uy
44 U= 4 (Cpeai+2 05,000 - 4Usy 0 — 450+ 9 Uzt + Upses
40.U,. =4 (Uit =200 ) 9 U0 --2Us e 750 0000
36T 1i=12 Uy it + Usns b 30se +15 Unyt + 50nt 4

solving which for £t = 0, 1, 21, 31, and 41, we find a solution to
Eq. (72) (with coefficient a® = 0.0625) such that when t = 0 it
reverts 1n the network nodes to the glven initlal state, according

to (80).

'To avoid the method of successlve approximations, 1t 1s expedient

to first solve the obtalned system of equations for the unknowns

U, t+1

layer using the temperature values in the nodes of the preceding

(kx =1, 2, 3, 4), and then perform the computations for each

layer. We obtain the following four formulas.
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14388 Uyuppume — 2128 U0 - 5504 Uy =i- 849 Ut + 494U,
14388 Usyuqu= 1368 Uy — 572 73,0+~ 3396 U3 + 777 U
14388 Ug e pim 283 Igar -+ 3396 U,.; = 2067 Uy 22280,
14388 Uyraa=494 Cuup = 2331 Uyyg ~ 6684 [y p 5 2741 Uyu-

The results of calculations using these formulas are given 1in

Table 3.

[

TABLE 3

Temperature values 1in nodes of cublc network calculated
according to formula (79)

Fxaot valis

L',,e,' Ly U, ¢ Uy, I Uy ¢ U, U.e

S6_ | 23,38 5.62 9.09 e | 3379

4.93 797 12,90 It 5,03 8,13 . 13416
437 173 2.75 450 728

1,48 2,39 2,87 0,93 1,94 249 403
1,31 3,12 033 - 08§ N 1,38 2,33

|

i
oy
) -
{ i
' . ¥ i
j 10,15 16,43 36.52 43,01 ' 10.15 16043 26,58 4301
148 |
!
[ .

The exact values of Uy ki in the node (xi, Yy» zi) for various
moments of time t = kl are calculated using the formula
i, u== 50 SIN T X Sin T v, SiD T e~ HWIRIED (Lowg, 1,..., §)s

since the function

u(x, x, g =500 wxsin = ysin = (0—0,1.73‘ =2

satisfles the gilven differentlal equation, as well as the glven
initial and boundary conditions.

The method 1s also applicable in the case of an arbitrary
closed surface. It 1s only necessary to set up special equations
for the boundary nodes, as we did for the two-dimensional case. A
large number of such equations may be constructed. For example,

the simplest of them can be obtained with the ald of the formula:

-61-



ot fwee mae) 1 (ume | vy
Amr}[h’rh( + )+h, m\ s Y )+

T, I M 1!’_1_ _ 3 1 1 u"
".'ha—i-h.( B B, ) (M, * ik +;.,:..) "]

where U, o, Ug ¢seees Up ¢ 8re the values of the function u(x, v, 2z,t)
in the main node v and the nodes next to it C, A,..., E, which are
separated from the main node (in directions opposite to or coincident
with the directions of the coordinate axes) by a distgnce of h;, ha,
.+.s he, respectively; and Auv,t is the value of the Laplace operaf

tion for the function u in the node with the number v at the

v,t
moment t.

In the case of boundary conditions of the geheral type it 18
necessary to have a formula of increased accuracy for the approxima-
tion of the normal derivative. For a cube they can b; obtalned by

reasoning in the same way as in item B in the derlivation of the

formula for a square.
Recelved December 29, 1959,
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